Spin Structure of the Nucleon

Katsumi Sugita,¹ Yoshiwo Okamoto,² and Matsuo Sekine³

Received December 4, 1995

Based on an infinite sublayer quark model, we determine the fraction of nucleon spin carried by subquarks.

In Sekine (1985), Sugita et al. (1991, 1992a,b), and Okamoto et al. (1992a,b) we proposed an infinite sublayer quark model according to which the proton p and the neutron n are made up of u_1 and d_1 quarks such that p $= u_1 u_1 d_1$ and $n = u_1 d_1 d_1$. Furthermore, u_1 and d_1 quarks are made up of u_2 and d_2 , etc. In summary, u_N and d_N quarks at level N are made up of u_{N+1} and d_{N+1} quarks at level N + 1, such that $u_N = (u_{N+1}, u_{N+1}, d_{N+1})$ and $d_N =$ $(u_{N+1}, d_{N+1}, d_{N+1})$, where $N = 1, 2, 3, \ldots, \infty$. Here, the u_N and d_N quarks have quantum numbers of spin J = 1/2, baryon number $B = 1/3^N$, isospin I = 1/2, third component of isospin $I_3 = \pm 1/2$, and fractional electric charge $Q = [(1 \pm 3^N)/(2 \times 3^N)]|e|$, where |e| is the electron charge. Thus, at N $=\infty$, an infinite number of pointlike quarks (u_{∞}) and antiquarks $(\bar{u}_{\infty} = d_{\infty})$ is considered as constituting the nucleon. The ultimate particle u_{∞} has quantum numbers of J = 1/2, I = 1/2, $I_3 = 1/2$, and $Q = 1/2 \cdot |e|$. Thus, all quantum numbers of the u_{∞} quarks are just one-half and this fermion will behave as if it was a lepton, since the baryon number disappears at the infinite sublayer level.

We considered the quantum numbers of weak isospin $t_3 = 1/2$ and $t_3 = -1/2$ for the ultimate particle $u_{\infty} = a$ and $\overline{u}_{\infty} = a^{cp}$, respectively, where a^{cp} means the particle operated on by charge conjugation C and then parity

¹Department of Electronics and Information Engineering, Sun Techno College, 1999-5, Ryuocho, Nakakoma-gun, Yamanashi, Japan.

²Department of Electrical Engineering, Chiba Institute of Technology, 2-17-1, Tsudanuma, Narashino-shi, Chiba, Japan.

³Department of Applied Electronics, Tokyo Institute of Technology, 4259, Nagatsuta, Midoriku, Yokohama, Japan.

transformation *P*. Furthermore, we proposed a preon model in which quarks, lepton, and gauge bosons are made up of the preon $\langle\langle a \rangle\rangle$ and antipreon $\langle\langle a^{cp} \rangle\rangle$ (Sugita *et al.*, 1992a,b; 1993a,b; 1994, 1995; Okamoto *et al.*, 1994, 1995a,b). It was shown that Higgs bosons are also composed of $\langle\langle a \rangle\rangle$ and $\langle\langle a^{cp} \rangle\rangle$ (Sugita *et al.*, 1993a,b); there are just four families (Sugita *et al.*, 1993a,b) and there is a possibility of eliminating the preon self-energy divergences (Okamoto *et al.*, 1994) and *CP* is violated in the β -decay of the nucleon (Sugita *et al.*, 1995; Okamoto *et al.*, 1995a,b).

It has been reported that 14% of the proton spin is carried by the spin of the quarks (Ashman *et al.*, 1988), and experiments were made to explore the spin effect of the nucleon (Ashman *et al.*, 1989; Adeva *et al.*, 1993; Anthony *et al.*, 1993; Adams *et al.*, 1994). On the other hand, a soliton model having the chiral symmetry of the nucleon has been proposed to explain why little of the proton spin is carried by quarks (Brodsky *et al.*, 1988).

In the following, we shall calculate the effect of the nucleon spin by considering the infinite sublayer quark model.

Assume that the nucleon is composed of u_N and d_N quarks at sublevel N. Furthermore, we assume that there is no interaction and no binding force due to hypercolor between levels.

Then, considering the difference of the spin-dependent structure functions Δu_N and Δd_N at the Nth subquark level, we write the integral of the spin-dependent structure function $g_1^P(x)$ for the proton as

$$2\int_{0}^{1} dx g_{1}^{p}(x) = Q_{u_{N}}^{2} \Delta u_{N} + Q_{d_{N}}^{2} \Delta d_{N} \equiv a$$
(1)

where

$$Q_{u_N} = \frac{1+3^N}{2\times 3^N}, \qquad Q_{d_N} = \frac{1-3^N}{2\times 3^N}$$
 (2)

Also, Δu_N and Δd_N are written as

$$\Delta u_N \equiv \int_0^1 dx \left[q_{u_N}^+(x) + g_{u_N}^+(x) - q_{u_N}^-(x) - q_{u_N}^-(x) \right] \tag{3}$$

and

$$\Delta d_N \equiv \int_0^1 dx \, \left[q_{d_N}^+(x) \, + \, q_{d_N}^+(x) \, - \, q_{d_N}^-(x) \, - \, q_{d_N}^-(x) \right] \tag{4}$$

where the superscript +(-) means the polarized subquark is parallel (antiparallel). Furthermore, $q_{u_N}^{\pm}$ and $q_{d_N}^{\pm}$ are the distribution functions for u_N and d_N , so (3) and (4) hold regardless of the number of quarks. Similarly, the integral

Spin Structure of the Nucleon

of the spin-dependent structure function $g_1^n(x)$ for the neutron is obtained by interchanging Δu_N and Δd_N ,

$$2\int_{0}^{1} dx g_{1}^{n}(x) = Q_{d_{N}}^{2} \Delta u_{N} + Q_{u_{N}}^{2} \Delta d_{N} \equiv b$$
 (5)

Substituting equation (2) into equations (1) and (5), we obtain

$$(1+3^N)^2 \Delta u_N + (1-3^N)^2 \Delta d_N = 4a \cdot 3^{2N}$$
(6)

and

$$(1 - 3^{N})^{2}\Delta u_{N} + (1 + 3^{N})^{2}\Delta d_{N} = 4b \cdot 3^{2N}$$
(7)

From equations (6) and (7), the sum of Δu_N and Δd_N is written as

$$\Delta u_N + \Delta d_N = \frac{2(a+b)3^{2N}}{1+3^{2N}}$$
(8)

At $N \to \infty$, we obtain

$$\Delta u_{\infty} + \Delta d_{\infty} = 2(a+b) \tag{9}$$

Therefore, the mean z component of the spin, S_z , of the u_{∞} and d_{∞} quarks is

$$\langle S \rangle_{u_{\infty}+d_{\infty}} = \frac{1}{2} \left(\Delta u_{\infty} + \Delta d_{\infty} \right) = a + b \tag{10}$$

Putting the experimental values a = 0.272 (Adams *et al.*, 1994) and b = -0.138 (Adeva *et al.*, 1994) at 5 GeV into (10), we obtain

$$\langle S_z \rangle_{u_\infty + d_\infty} = 0.134 \tag{11}$$

Hence 27% of the proton spin is carried by the spin of the u_{∞} and d_{∞} quarks. On the other hand, from the naive quark model, which is equivalent to our model at N = 1, we obtain

$$\langle S_z \rangle_{u_1 + d_1} = 0.121 \tag{12}$$

By comparing (11) with (12), we conclude that the proton spin carried by the spin of the u_{∞} and d_{∞} quarks is 11% larger than that carried by the spin of the u_1 and d_1 quarks. Furthermore, it is of interest to note that the experimental value including third-order QCD perturbation at the CERN Spin Muon Collaboration (SMC-p) from the simple quark model is almost the same value as 0.134 in (11) (Frois and Karliner, 1994).

REFERENCES

- Adams, D., et al. (1994). Physics Letters, 329B, 399.
- Adeva, B., et al. (1993). Physics Letters, 302B, 533.
- Adeva, B., et al. (1994). Physics Letters, 320B, 400.
- Anthony, P. L., et al. (1993). Physical Review Letters, 71, 959.
- Ashman, J., et al. (1988). Physics Letters, 206B, 364.
- Ashman, J., et al. (1989). Nuclear Physics, 328B, 1.
- Brodsky, J., Ellis, J., and Karliner, M. (1988). Physics Letters, 206B, 309.
- Frois, B., and Karliner, M. (1994). Physics World, 7, 44.
- Okamoto, Y., Sugita, K., and Sekine, M. (1992a). International Journal of Theoretical Physics, 31, 59.
- Okamoto, Y., Sugita, K., and Sekine, M. (1992b). International Journal of Theoretical Physics, 31, 2043.
- Okamoto, Y., Sugita, K., and Sekine, M. (1994). Nuovo Cimento, 107A, 1363.
- Okamoto, Y., Sugita, K., and Sekine, M. (1995a). Nuovo Cimento, 108A, 371.
- Okamoto, Y., Sugita, K., and Sekine, M. (1995b). Nuovo Cimento, 108A, 1153.
- Sekine, M. (1985). International Journal of Theoretical Physics, 24, 701.
- Sugita, K., Okamoto, Y., and Sekine, M. (1991). International Journal of Theoretical Physics, 30, 1079.
- Sugita, K., Okamoto, Y., and Sekine, M. (1992a). International Journal of Theoretical Physics, 31, 521.
- Sugita, K., Okamoto, Y., and Sekine, M. (1992b). Nuovo Cimento, 105A, 1051.
- Sugita, K., Okamoto, Y., and Sekine, M. (1993a). Nuovo Cimento, 106A, 271.
- Sugita, K., Okamoto, Y., and Sekine, M. (1993b). Nuovo Cimento, 106A, 771.
- Sugita, K., Okamoto, Y., and Sekine, M. (1994). Nuovo Cimento, 107A, 1793.
- Sugita, K., Okamoto, Y., and Sekine, M. (1995). Nuovo Cimento, 107A, 2875.